
Re-Thinking Software As Engineering
Re-Thinking Software As Engineering

Why This Document
Is Developing Software Engineering ?

What is Engineering ?
What makes Software Not Engineering Today?
How Software Can become Engineering?

Path Forward
Deny Dogma
Many DOGMAs are Remnants of OOP

S
O
L
I
D

Get Shit Done
Further Discussion on "Design" & Metrics

Perils of Inheritance
Almost Abstract Class - Interfaces with Default

Onto State Management and Reversible Computation
Object Relational Mapping - ORM
View Models & Data Binding
Information Conservation - Reversible Computation - Immutability
Quack Like a Duck, Typing and Traits , Mixins

Final Words
Further Reading & References

Why This Document
In the course of past 3 decades or so, there has been a great tendency to complexify or rather
"enterprisify" incredibly simple common senses into a form of cargo cult engineering. As
computing power increased, the discipline of Electrical Engineering diverged itself into Electronics
with the discovery of semiconductors and finally with arrival of cheap computing machines - make
"Computer" science as a household and synonym for "developing software".

This document put these changes into perspective, and ask for an introspection of the following
questions:

1. Why we do
2. When we do
3. What should we do
4. Where we should do what we must do
5. Who should do what?

Off we go then.

Is Developing Software Engineering ?
First and foremost there is a huge debate raging over this. This is an age old debate - raging from
"Are mechanics Engineers?" . The answer is of course, YES. Some mechanics are of course
Engineers, but not all mechanics are Engineers. By definition all Engineers are taught to be fully
capable as a mechanic in their respective fields.

Computer is no exception. The curriculum share a hefty bit borrowed from Electronics and
Electrical - and when one is old timer like us, bits and pieces from mechanical civil and metallurgy
too.

What is Engineering ?

Here we ask the question - what makes a discipline Engineering? Engineering, has a very simple
definition.

Using scientific principles to economically change society one innovation at a time.

No more and certainly no less.

What are scientific principles? It is adherence to Logic and Data - gathered by impartial
unbiased experiments.

If one is too much into logic and not looking at any data, we are looking at abstract mathematics
and foundations of mathematics, no small feat of human mind, by any means. After all, pursuit of
those generated Kolmogorov axioms and pricing theory as results from those abstract thinking.

If one is only data driven - then we are literally looking at mechanics at an engine shop who does
not know why they have to change the knob when the pressure at a critical level. Such thinking
will keep the engines running, but will not build newer better engines.

Hence, pursuit of Logic IN Data is what pursuit of science is, Engineering just adhere to it to
make the fruits of sciences available to the society.

What makes Software Not Engineering Today?

In the last 30 years or so, a lot of literature has been formed - which, for the lack of better terms
will qualify as Cargo Cult. No-one, having one ounce of scientific experience will give any due to
them. These viewpoints generated way more debates than it should because these are biased
personal opinions - not result of any impartial impersonal evaluation of data.

Let's go about some of those debate which were raised.

1. OOP - Arguably the most popular debate of all time. Quite literally more than half of all
literature on "Software" are devoted to only this, and methodologies about this. Detractors
argue this is a fault of Alan Kay, and Bjarne Stoustrup, however I would argue than people
who did not study what Kay and Bjarne has to say about real world modelling. None, and let
me repeat none - actually read the 1997 edition of the C++ Programming language - where
chapter IV is the source of almost all trouble we see today and naturally the counter point of
Alan Kay.

2. Type War - the most dangerous war in the Software. Type vs Untyped debate rage supreme,
even today. Eventually like Cold War, an uneasy peace has been established.

1. Web is untyped or dynamically typed (ECMA Script, HTTP etc etc)
2. UI is rarely Typed (Web, WPF, Android ...)
3. Enterprise Computation is fully typed (C#, Java , etc etc)
4. Administrators are partially typed (Python, Powershell, Shell and did we forget DB and

SQL?)
5. And then the hardware engineers look at chips and assembly and wonder what is the

fight that is going on. Software, quite humorously is full of humorous people, they think.

No matter how funny it sounds, let me assure you, my readers, that the reality is far from that. It
is literally like a holy war out there, where no one yields completely. With the advent of ML -
Python simply won there, but Julia came along with types. Guido, simply conceded Google (Go,
anyone?) and moved to Dropbox.

You might say I am digressing, but no. Wait. None of these debates and holy wars or crusades
were done and fought objectively. All of these are being fought about "Some Random Elder has
Some Random Opinion" I call it SRESRO principle.

Naturally, people who are actually working on Windows, Darwin or Linux kernel - make joke
about SRESRO. After all Dave Cutler literally created the AMD64 architecture to generate address
virtualisation and expansion. Torvalds, who does not require introduction - and everyone knows
he does not like C++ at all. See what I mean? SRESRO again! It is hard to come out of the
mentality!

Software, in the last 30 years became a classic case of Cargo Cult Engineering. To summarise :

1. There has been no experiments to measure any DOGMA's practical efficacy or efficiency and
ROI

2. There has been no foundational discovery - from a pure scientific standpoint (locked into
OOP model)

It is very clear, by Logic and Data that we are looking at clear Cargo Cult which just believes what
the Elders said.

How Software Can become Engineering?

By simply bringing about Scientific Principles. Ask any random software Engineer what are
Scientific Principles. See how the individual falters - and says that is not software. It is, quite
naturally a piece of Art.

Newsflash, I do have a first year degree in Painting, and I can tell you Software is not Arts. Not the
liberal kind anyways. Now, I know some Universities used to give MA in pure mathematics -
Software belongs to that M.A. category - because there are theorems which proves it. It is not
SRESRO.

This is what we call Janus syndrome. In front of an Engineer people say Software is Art, while in
front of a lay-person they would say it is highly technical thing. (Same person who's name is
imbibed in the month of January past and future !)

People even created a name for it, "Technology". And, much to the everlasting shame to Claude
Shannon, they added "Information" in front of it, by calling it "IT" Information Technology. Any
communication engineer literally laughs at it. I would say it also alludes to the horror novel "IT"
from Stephen King.

Let's demystify this a bit. All program, a logical valid program is equivalent to a mathematical
theorem, proven. There is a theorem around it - and that is called Curry Howard
Correspondence. Let's repeat. Any logical, testable, proper program - which is correct IS in fact an
established Mathematical Theorem.

Software by definition is scientific then, more into Logic than Quantum Mechanics really is - where
people still do not understand the cause of Uncertainty and treat it as an axiom - quite literally we
stopped digging there (not really, read The Trouble With Physics)

Software can be made Engineering by inverting the trait of SRESRO - by demanding proof. The
problem with SRESRO is they appeal to common sense. Common sense is the most uncommon
thing in the universe. Many common sensical things are not true at all - Banach & Tarski showed it
prior. Science IS NOT Common Sense, not all the time. Neither so is Engineering.

As B. Russel said - if someone claims that between Mars and Jupiter - there is a tea cup too small
to be detected by RADAR or a Telescope - someone then has to bring the proof that it is so.

If some manual says : "this is recommended practice" - source code needs to be seen to find out if
the practice makes any sense or it is a clever ploy to discourage people into finding issues in the
software construction itself. Mark Russinovich is a stalwart in this regard. His legendary handling
of Terminate and Stay Resident Rootkits are taught by every kernel instructor.

Never Believe the Manual. Read the source. If source not available, reverse Engineer the
source code.

Mark disassembled the windows source code and wrote a whole manual - which was published
later by Microsoft Press as the only authoritative book on Windows Kernel, it still is. Every
Windows Kernel developer has to read it, and check the source.

After all Science is about Reverse Engineering Nature.

Software, if anything different - is taking a deviant path from other scientific discipline then even
with Open Source is the primary mover! People do not read open source. They should read it
more often.

Path Forward
By definition we have to invert our priorities. Note the definition of the Engineering. Again.

Using scientific principles to economically change society one innovation at a time.

What comprise of society? Of course, as we all are developing software for some users, they are a
subset of the society we want to change via innovation. How can we focus on changing their lives?

Naturally, the path is simple.

1. Deliver customer deliverables in:

1. Lowest possible time
2. Highest possible quality within that timeframe

This is what is called being Agile. Agile is not scrum. In fact, it can be argued that Scrum is
anti agile. Anyone having a difference in "opinion" may look into the agile manifesto itself.
Data and Logic, remember?

2. Using minimal resources

1. Such as to minimise cost
2. Minimise maintenance

This is what is called being economical. There is a reason why Concorde was a failure. It was not
economically viable.

In the following section we shall discuss how to take this path forward.

Deny Dogma

There are only two types of "Software" folks in the world.

1. Who wrote a lot of code, which got shipped to millions of customers with no error correction
route

2. Who wrote a lot of blog and shared knowledge to millions of people - w/o writing any actual
code

DOGMA are created by people of [2] category. It is incredibly important to understand just
because someone came here first does not mean they have some elderly supremacy over other
ideas.

Leslie Lamport is the author of Latex and is a literal Computer Scientist. He is a legend in
concurrency. Everyone talks about CAP Theorem - which is not even a theorem - but no one really
talks to Lamport Theorems which actually are!

No one has ever heard him talking about dogmas. And even he can be wrong. Science has no
place for idol worship.

Many DOGMAs are Remnants of OOP

OOP was a dangerously deranged idea which was sold as a magic bullet to all the problems of
building large scale software. While it is wonderful on a graphical system almost anywhere else it
is an incredibly bad influence. Anyone thought about Object Orient SQL. Oh Wait. That is
Cassandra. And MongoDB programmatic access. Anyone noticed how pathetic they become? It is
easy to gather usability metric against code connecting to db and sql query running on db.

Let's discuss some those principles.

One of the most interesting group of principles is SOLID.

It has became popular and FAD and DOGMA and now there is a FLUID principle from 2011.

SOLID stemmed from the brilliant book - The Design of the Unix Operating System - for those who
did not study it, it is a must read. Unfortunately it was discussing SOLID at a functional level - not
at a system or as OOP calls it "Class Level".

S

Single Responsibility Principle.

Fascinating thought process, but naturally does not work. Because it is excruciatingly vague. And
that is where the ART, seem to come in. At a pure functional level it is vacuously true, well almost.
By definition a function is a subset of a cross product domain set into range set with the
additional property that same input can not produce different output.

Given it is defined as such, Single Responsibility principle is a THEOREM about functions. But an
object is a state machine by itself. It maintains states. At this point it cease to become science and
becomes a novel idea with no logical value.

O

Open Close Principle.

Arguably the vaguest of all - it states Modules should remain Open for Extensions but Closed for
Modifications. Meyer, when he conceived this, he was considering Modules.

Design by contract (DbC), also known as contract programming, programming by
contract and design-by-contract programming, is an approach for designing software.

It prescribes that software designers should define formal, precise and verifiable interface
specifications for software components, which extend the ordinary definition of abstract
data types with preconditions, postconditions and invariants. These specifications are
referred to as "contracts", in accordance with a conceptual metaphor with the conditions
and obligations of business contracts.

Notice the wording. Do you think we develop and design software this formal way? If yes, please
stick to it. Given someone is quite literally following design by contracts - Open Close totally make
sense.

But it was stole in the name of OOP and it totally has nullable logic value since then.

Also, it quite literally goes against - Composition over Inheritance. Which party you will join? The
overwhelming modern developers in the last 10 year or so - has argued that it is not only
confusing, BUT simply wrong for the same reasons.

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Formal_methods
https://en.wikipedia.org/wiki/Component-based_software_engineering#Software_component
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Conceptual_metaphor

L

Liskov Substitution Principle

Out of all these principles the only one which has a pure theoretical scientific backing is L.

Named after Barbara Liskov, a stalwart by no less means the principle reads:

Let be a property provable of the object of type .

Then should be true for any object which is where is a subtype of .

Ah. These are music to my ears, because I can see quite literally science here, Logic here. At least
this principle has actually something that is non vague!

It makes total sense! Till it does not.

But, does this happen? Objects do not behave like that, not the sort of objects we know, for sure!

This is the only one principle which is stemming from Poof Theory and Type theory (there are
multiple semester courses for those) :

In an interview in 2016, Liskov herself explains that what she presented in her keynote
address was an "informal rule", that Jeannette Wing later proposed that they "try to figure
out precisely what this means", which led to their joint publication[1] on behavioral
subtyping, and indeed that "technically, it's called behavioral subtyping".[3] During the
interview, she does not use substitution terminology to discuss the concepts.

We can respect that. That is a woman of science, admitting that its quality snake oil.

Unfortunately, given medium blog posts do not cover these - and books are seldom read - these
remained a mystery till Wikipedia came into foray. Data and Logic. Not SRESRO.

I

Interface Segregation Principle.

No client should be forced to depend on methods it does not use.

What does that mean? Can I violate it, ever? Like ever? Turns out like you can. Just have a base
class having lot of fancy stuff it will be doing.

The design problem was that a single Job class was used by almost all of the tasks.
Whenever a print job or a stapling job needed to be performed, a call was made to the Job
class. This resulted in a 'fat' class with multitudes of methods specific to a variety of different
clients. Because of this design, a staple job would know about all the methods of the print
job, even though there was no use for them.

This is exactly the problem of subclassing from a base class, which has lot of methods which never
gets used, ever.

Question yourself, is it possible to do it, ever? The answer is avoiding inheritance completely and
using Trait model, we shall talk about it a bit later to the end. This principle says - do not subclass
almost ever, for specialisation. Use Composition, sort of.

https://en.wikipedia.org/wiki/Liskov_substitution_principle#cite_note-liskov1994-1
https://en.wikipedia.org/wiki/Liskov_substitution_principle#cite_note-3

D

Dependency Inversion Principle.

In short, in a module dependency graph, we should be able to do a topological sorting - and there
should be no cycle.

Should there be? Biologists are not too sure. This comes under a pretty standard system called
dynamical system where causes and effects are non linear, most of the time. For example see
Logistic Equation.

Real world is non-linear. Linearity of this form is quite literally like inducing temporal traversal
order on a connected system. Only in an extremely simplified system such things can be done.

Did Computer scientists thought about it? Bet they did. That is why there are "Event Driven
Programming" . In a connected system the only way forward is events - which are always non
linear.

Should the processing be Markovian? For those who are unaware, a Markovian process is where
next step is only dependent on the last state, while a non Markovian process might have more
states.

This would require someone to store all the states changes of the eventing system - which is or
course what a Snail Variable is.. The observable, albeit not entirely correctly implemented.

Again this exists, because, there are Objects. If a behaviour was modelled in terms of pure
function, such thing will be written via a compositional logic.

Get Shit Done

Given that OOP itself is a pretty remnant of the past - and almost all languages are evolving into
part functional nature it is highly recommended to discuss the path forward.

The following principles are derived directly from Engineering.

1. Develop for today (You are not gonna need it - YANGNI)

1. Do not forget tomorrow (Do not Repeat Yourself)
2. Totally ignore days after tomorrow (things change every month)

2. Fastest finger first wins

1. When the quality is high enough (happy customer)
2. Tomorrow is taken care of (build for immediate future)

3. Smallest Code wins

1. Given Tomorrow people would be able to understand it - (Principle of Least
Astonishment)

2. Code is provably correct (CHC)
4. Developers gets judged on:

1. Less experience - how fast code and how much with quality
2. Higher experience - how much code they removed from existing source code base

5. Only measure of code compaction is - Kolmogorov complexity

6. Code complexity measures like Cyclomatic are dangerously modular (Assembly Line
Complexity)

Hence, the motto should be get shit done (A LinkedIn teaching) - faster, better, cheaper than
anyone. That is engineering.Of course assembly can be itself an Engineering feat! See "The Toyota
Way" to understand what assembly line really means.

Further Discussion on "Design" & Metrics
It is absolutely important to understand that NO Code is the best code. Unlike some consultancy
firms, in a product company, any product company, really, no one cares about the lines of code
that have been written. Again, time to see Kolmogorov Complexity.

Productivity is measured, quite literally by

Hence, infra should be written in a such a way that coding should be breeze. Building such an
infra is Engineering. Compare creating a locomotive engine - vs piloting it. Maximise outcome,
while minimising effort is the key.

1. Code LESS
2. Code Meaningful (Maximise Information Entropy)
3. Deny Dogma

It should be called LMDD.

Perils of Inheritance

Humans love it. Biologists love it, but then, inheritance has cost in terms of performance and
complexity. Most people imagine inheritance is a hierarchy, and they are mistaken - because it is a
graph. There is no family tree, it is always a Family Graph. And then there are foundational
problems in inheritance : most easy one which gets taught to the sophomore folks is Circle Ellipse
problem. Who should inherit who ?

What "developer" tend to forget is there is still a Curry Howard Correspondence. A compiled,
correct code must adhere to a theorem - and that stems from Axioms. While almost everyone
understood the nuance of "Diamond" problem - almost no one realise it is an unavoidable
conclusion from Incompleteness Theorems from Godel. In short, it will remain, forever.

In summary, inheritance and polymorphism due to that is result of applying DRY. But obviously,
there are costs. These costs are known as Abstraction Costs. Rust makes it painfully obvious. For
example, here is the code that literally finds out in the inheritance chain - which method to call
(dynamically typed language interpreter) :

This code above shows the problem with nested hierarchy of OOP - the abstraction cost. Caution :
Statically Typed languages do not do these - they have 2 magic tricks: Virtual Function Pointer
Table and Pointer to Virtual Function Pointer Table, which gets generated at compile time - and
maintains tables which can be actually of the order where is the number of classes in the
hierarchy.

One would be blissfully unaware of such things - unless of course they developed languages
multiple times, to solve various problems.

There is a tendency for people to start inheriting from a base class. No one noticed that it goes
totally against the single responsibility principle. Again they are DOGMA.

Many older, poorly written frameworks (and many modern, poorly written ones) rely upon Base
class. Java Servlet was the first of them - the most notable ones, and just coming after COM/DCOM
WPF did not do justice there either.

The entry point is you have to inherit from a base class. That is catastrophic because neither Java
or C# support multiple inheritance. Once you done with it - there is no escape, you can not ever
ever inherit from anyone else.

Most people do not understand what an abstract class is. It is one who is actually implementing
an algorithm. Notice the abstract class AbstractMap in Java sdk. One should NEVER implement
and abstract class like that, ever. That is a demonstration of what is to be totally avoided.
Specifically look at the functions which every child of this class overrides. It seems people were
learning OOP while designing Java JDK.

data class XMethod(

 val name : String,

 val body : Array<Byte>

)

data class XObjectType(

 val myId : String,

 val myParent : String,

 val methods : Map<String,XMethod>

)

fun findMethod(someInstance : XObjectType, method: String,

Map<String,XObjectType> repo) : XMethod? {

 var cur = someInstance

 while (cur.myId.isNotEmpty()){

 if (cur.methods.containsKey(method)) return cur.methods[method]!!

 cur = repo[cur.myParent]!!

 }

 return null

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Almost Abstract Class - Interfaces with Default

It was not lost entirely on common sense of the people. That is why, when the functional rewrite
happened, new features came along which supported Interfaces with proper implemented
methods - called default methods. Otherwise, all classes inheriting from them have to rewrite all
the implementation.

So, modern Java has a tiny advantage. They have interfaces with proper methods defined, which
makes them dangerously close to the Abstract class.

What does that give you? That is the one which gives you flexibility. You do not assume (adhering
to SRP) - one class does it all. You ask - is this control closable? Is that component network-aware?

An interface is what really what a responsibility looks like.

Here are some metrics:

1. Base class ? That is bad

2. Lotta interfaces? May be good given

1. A codebase where one interface gets used only once is a debacle.
2. Interfaces are real traits of a responsibiity

Problem is, they can not store states. But of course, they can, if you force an interface to be a
View.

Onto State Management and Reversible Computation

What are objects anyways? The foundational question gets answered in the most ridiculous way
possible. However, formally there are two answers.

Objects are:

1. States Machines.
2. Property Buckets

In a language like JavaScript or Python objects do show the Property Bucket characteristics, while
Strostrup's objects are state machines.

JVM and CLR are in between, thanks to reflection they can actually be made into either!

Alan Kay - the literal founder of the OOP believes objects should talk to each other via events.
While this is the domain of languages such as Erlang, and is possibly the ONLY Language which is
true to what Alan suggested. Unfortunately, for demented souls like us relying on JVM and CLR
that is not going to be true. But even Alan's sense too - they are state machines never the less.

Object Relational Mapping - ORM

What people do not realise that there is a fundamental relation between event and objects
methods.

Objects methods are only of 2 types as far as state change is concerned.

1. Write - change state of the object
2. Read - does not change state of the object

The [2] category methods are actually called "View" to the object system. Thus, a view shows only
a projection of the objects current states ensemble.

An event is something that changes states of an object - what it could be, we wonder? Of course,
nothing but a write function call over an object. That is the lowest granularity event that can be
supported on that object.

Consider the same as the database view. This relationship between database entity and object
entity generated the while discipline of ORM - Object Relational Mapping.

1. Hibernate focuses on Property bucket representation - storing fields in columns
2. iBatis focuses on event representation

Recall the triggers in a database ? They are quite literally event hooks.

This brings the fundamental question - why we can not then write SQL for object query? Some
smart people thought about it, and most notable of such implementation is Type Aware LINQ a
default part of .NET. Sadly, it seems from an Engineering standpoint JVM ecosystem is lightyears
behind the CLR.

View Models & Data Binding

Views, are then, pretty obviously just a method call by gathering current frozen state of an
underlying object. Which object ? That object is called a ViewModel. That is it. There is really
nothing fanciful about it. But implementing ViewModel is an incredibly complicated job - one has
to freeze something to give only read only access to the underlying states.

Unfortunately, NONE of the examples on internet understand what it supposed to mean or do.
World has fallen into the trap of a Cargo Cult Engineering here.

When MVVM was invented in Microsoft - it stemmed from removing logic from the UI - so that UX
designers can design better and ViewModel focusses on data binding.

What is data binding? To understand data binding one has to understand the concept of data
source, again, invented in Microsoft and then quietly stolen and used incredibly misappropriated
across all over in everywhere.

The meaning of Boundable View is :

1. One gives a collection or any other object to the View
2. View just knows how to render it.

3. All of these has to be done automatically - w/o any source code

Consider the view that gets created via a metadata called a view definition? That is the true
meaning of the Data Binding and View Model.

Only time one should focus on ViewModels if one is quite literally creating a custom control.
Nowhere else.

It is frustrating to see there is no such control already available in frameworks which is more than
10 years old where we are not able to do this :

This is rudimentary, and creating such a code is quite literally in a fresh graduates capability, but it
does not exist. Apparently someone autogenerates the class for the same, it is bad Engineering.
Let's keep it there. There is nothing new, these concepts are quite literally 10 years old. Old wine
in a terribly new bottle you say? WPF had this in the first version. I have a patent for the same.

Summary is, ViewModel should be an automatic infra, not required to create at all - anywhere. It's
only jobs are:

1. Data Binding
2. Event Handling

Both are to be automatically done - in Pareto optimal cases. Focus on creating such components. I
fail to see any focus is being done on creating some of these. That would be, as it depends on
data, number, an Engineering.

data class MyData(

 val oneFieldOfObject : String,

 val anotherFieldOfObject : String

)

val someList = listOf(MyData("A","a") , MyData("B","b"))

// finally

radioControl = radioGroup{

 this.dataSource = someList /* dynamically bound, if someList changes it

would autorender */

 this.textProperty = "oneFieldOfObject"

 this.valueProperty = "anotherFieldOfObject"

 onSelectChange { selectedItem ->

 /* do some magic here if at all

 ideally it can auto bind to something else

 */

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Information Conservation - Reversible Computation - Immutability

Most people who approach the problem of functional paradigm from the classic Curry way (
Haskel) - do miss the point of Entropy and the reversible computation. Ask yourself the question -
given only output of the AND function can you tell what inputs were used to generate the output?
You can not, right? This is from where information conservation starts.

It is easy to just invert the AND operation if you keep one input with the output itself. Feynman is
attributed to reversible nature of computation - but - it has huge implication in the asynchronous
programming.

If you make data immutable it generates referential transparency, and thus, if you store all steps
you would be able to playback anything ever happened to your system. In the colourful language
"Software Development" it is known as playback - ability.

While this is done by almost all hedge funds for legal and financial reasons - it is not a common
practice because of the huge amount of data it would generate.

Consider the risk of memory when we sort a 1 million record and it produce another 1 million
record, sorted as a separate list. Immutability has a cost and a terrible price. These are
Engineering choices.

Quack Like a Duck, Typing and Traits , Mixins

For those who come from any dynamic language - they are familiar with what is called as Duck
Typing. If something quack likes a duck then it must be a duck.

Modern languages, like Go for example took this definition by heart. In go, one do not even say if
a structure is implementing any such Duck-i-ness.

There is no implements keyword in Go; whether or not a type satisfies an interface is determined
automatically. This in Python would be called "Duck" typing, really (well, not really).

Go is dangerously close to what is called Trait, and for the unaware interfaces are a type of shell-
traits.

type Animal interface {

 Speak() string // that is all folks!

}

type Duck struct {

}

func (d Duck) Speak() string { // it is not even inside it's definition

 return "Quack!"

}

1

2

3

4

5

6

7

8

9

Scala traits were designed from scratch as building blocks for modular components
composition. They are multiple inheritance friendly and don't have diamond problem by
having strict rules on evaluation order of mix-ins due to linearization. They also support
state, can reference the implementing class and place restrictions on which type can mix-in
them. Look at Scala collections library where traits are used thoroughly.

So, the fact is, Java (and subsequently Kotlin) is not that much evolved in terms of "Computer
Science" - Scala is still lightyears ahead. Ordersky, is a genius. I have said it a million times, and I
will say it again. Why, why why Ordersky did not design Java?

On the other hand some dynamic languages do support a limited form of multiple inheritance -
most notably Ruby and Python. Even in C++ there is Mixin. This is a mixin from Ruby :

you can include a module within a class definition. When this happens, all the module's
instance methods are suddenly available as methods in the class as well. They get mixed in.
In fact, mixed-in modules effectively behave as superclasses.

And that is why Ruby was said to be "beautiful language" if only it has speed. Wait. JRuby has
similar speed as Java!

Final Words
In 1930s - Chemists celebrated what is known as Hybridisation. By 1950 Scientists already found it
is ineffective in anything beyond rudimentary organic compounds - and Molecular Orbital theory
came in foray which is a subtopic of quantum chemistry. Unfortunately all of us, studied a 70
years old theory in pre college, because that was easily understandable, not because it was
correct assessment of reality.

Science does not depend on easy. Science is the pursuit of truth, and Engineering must be
motivated by scientific progress.

module Debug

 def whoAmI?

 "#{self.type.name} (\##{self.id}): #{self.to_s}"

 end

end

class Phonograph

 include Debug

 # ...

end

class EightTrack

 include Debug

 # ...

end

ph = Phonograph.new("West End Blues")

et = EightTrack.new("Surrealistic Pillow")

ph.whoAmI? # "Phonograph (#537766170): West End Blues"

et.whoAmI? # "EightTrack (#537765860): Surrealistic Pillow"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

http://en.wikipedia.org/wiki/Multiple_inheritance

Thou shall speak truth always - while is nice starting point - it's usage , as everyone knows is
limited. John Nash & our own Von Neumann is attributed to create the discipline of evolutionary
psychology to state otherwise. Ethics, as applied mathematics suggests - is plain and simple
Evolutionary Stable Strategy.

Likewise, what was true - in 1960 and 1990s even and in 2000 even - is not true anymore. Java was
a revolutionary way of looking at development then - today it is the biggest laggard in terms of
adapting from research. Given OOP quite literally means Java /C# and does not really mean
Simula, or Prototypic Inheritance in ECMA Script or even C++ (For Bjarne Sake - Java was a clone!) -
many of the concepts are archaic and useless for modern software development using modern
tools. There are way more paradigms in the world to solve a problem that OOP, it is one of 100s. It
is useful to study them all, in detail.

Rust frowns upon creating functions even - because function calls are slow. Rust believes in
macros, and believe it or not, println!() in rust is implemented as a macro because they want
to optimise on speed. All heavily used functions, as rust deals with it - are implemented as
macros!

It is one thing to state Newtons Law, and another thing to comprehend it against Noether
theorems. The truth is not Newtons Laws - Newton just discovered part of it, truth lies in Noether
Theorems. No one can say Newton was WRONG. Newton started the journey which culminated by
Noether and later picked up by Einstein to put it an a better place.

Same is true for Software in Modern era.

Hence the most important aspects of Engineering - Software.

1. Deny Dogma
2. Ask question of 5 Ws.

Let's summarise with the 5Ws.

1. Who

1. Wants software ? Customer and Business
2. Builds Software ? People like us

2. What

1. We do? Build software for business
2. We want ? Customer Satisfaction

3. When

1. Customer want it? Fastest possible way
2. We think it is ready ? Open problem

4. Where

1. To apply theory ? When there is a significant ROI measured in numbers (removal of
lines of code)

2. Not to apply theory ? Failing that previous point
5. Why

1. Customer needs it ? That is how they earn money - so deliver faster

2. We build it? Because that is how we earn money - so deliver faster

The only true metric of success in Engineering is customer satisfaction using scientific principles
so it becomes repeatable.

This document will be incomplete if I do not put the quote that started this revolution in terms of
how software is bloated garbage today - Ryan Dahl's (yes, the same guy who wrote Node.js) rant
about software:

I hate almost all software. It's unnecessary and complicated at almost every layer. At
best I can congratulate someone for quickly and simply solving a problem on top of
the shit that they are given. The only software that I like is one that I can easily
understand and solves my problems. The amount of complexity I'm willing to tolerate
is proportional to the size of the problem being solved.

In the past year I think I have finally come to understand the ideals of Unix: file descriptors
and processes orchestrated with C. It's a beautiful idea. This is not however what we
interact with. The complexity was not contained. Instead I deal with DBus and /usr/lib
and Boost and ioctls and SMF and signals and volatile variables and prototypal inheritance
and C99_FEATURES and dpkg and autoconf.

Those of us who build on top of these systems are adding to the complexity. Not only do
you have to understand $ LD_LIBRARY_PATH to make your system work but now you have
to understand $NODE_PATH too - there's my little addition to the complexity you must now
know! The users - the one who just want to see a webpage - don't care. They don't care
how we organize /usr, they don't care about zombie processes, they don't care about
bash tab completion, they don't care if zlib is dynamically linked or statically linked to
Node. There will come a point where the accumulated complexity of our existing
systems is greater than the complexity of creating a new one. When that happens all
of this shit will be trashed. We can flush boost and glib and autoconf down the toilet
and never think of them again.

...

The only thing that matters in software is the experience of the user.

Further Reading & References
NOTE : This document takes a very wide sweep and there are some links to encompass the
"opinion" which can be verified via data and logic. The references are presented here. By no
means they are exhaustive, and new ideas gets added each day - and old ideas gets discarded and
re-invented in new bottle (MVVM) each day.

1. Enterprisification - https://projects.haykranen.nl/java/

2. Cargo Cult - https://en.wikipedia.org/wiki/Cargo_cult , https://en.wikipedia.org/wiki/Cargo_cul
t_programming

3. 5Ws - https://en.wikipedia.org/wiki/Five_Ws

4. Agile Manifesto - https://agilemanifesto.org

https://projects.haykranen.nl/java/
https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Cargo_cult_programming
https://en.wikipedia.org/wiki/Five_Ws
https://agilemanifesto.org/

5. Computer Science - https://en.wikipedia.org/wiki/Computer_science

6. Software Engineering Debate

1. https://www.cs.usfca.edu/~parrt/doc/software-not-engineering.html
2. https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-

themselves-engineers/414271/
3. https://softwareengineering.stackexchange.com/questions/111265/is-software-develop

ment-an-engineering-discipline
7. OOPs(?)

1. Alan Kay - https://wiki.c2.com/?AlanKaysDefinitionOfObjectOriented
2. Stroustrup - https://www.amieindia.in/downloads/ebooks/cplusplus.pdf#page=700
3. Meyer - https://en.wikipedia.org/wiki/Object-Oriented_Software_Construction
4. Exceptionally Bad - https://www.leaseweb.com/labs/2015/08/object-oriented-programm

ing-is-exceptionally-bad/
5. Disaster - https://medium.com/@konradmusial/why-oop-is-bad-and-possibly-disastrous

-e0844fa96c1f
8. Type Systems

1. Strong and Weak Typing - https://en.wikipedia.org/wiki/Strong_and_weak_typing

2. Type Theory - https://en.wikipedia.org/wiki/Type_theory

3. Category Theory and Types - https://ncatlab.org/nlab/show/relation+between+type+the
ory+and+category+theory

4. Haskel Type System - https://softwareengineering.stackexchange.com/questions/27931
6/what-exactly-makes-the-haskell-type-system-so-revered-vs-say-java

5. Scala Type system - https://docs.huihoo.com/scala/programming-scala/ch12.html

6. Dynamic Typing Benefits

1. https://wiki.c2.com/?BenefitsOfDynamicTyping
2. https://softwareengineering.stackexchange.com/questions/122205/what-is-the-sup

posed-productivity-gain-of-dynamic-typing
3. Comparing Type systems - https://pleiad.cl/papers/2014/hanenbergAl-emse2014.p

df
4. End of Cold War - https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/rdl

04meijer.pdf
9. Algorithmic Information Theory

1. Shannon Entropy - https://en.wikipedia.org/wiki/Entropy_(information_theory)
2. Kolmogorov complexity - https://en.wikipedia.org/wiki/Kolmogorov_complexity
3. Chaitin Costant - https://en.wikipedia.org/wiki/Chaitin%27s_constant
4. Mu Puzzle - https://en.wikipedia.org/wiki/MU_puzzle

10. Curry Howard Isomorphism - https://en.wikipedia.org/wiki/Curry–Howard_correspondence

11. Design of Unix Operating System - http://160592857366.free.fr/joe/ebooks/ShareData/Desig
n%20of%20the%20Unix%20Operating%20System%20By%20Maurice%20Bach.pdf

12. SOLID

1. Basis - https://en.wikipedia.org/wiki/SOLID

2. Discussion - https://www.tonymarston.net/php-mysql/not-so-solid-oo-principles.html

https://en.wikipedia.org/wiki/Computer_science
https://www.cs.usfca.edu/~parrt/doc/software-not-engineering.html
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
https://softwareengineering.stackexchange.com/questions/111265/is-software-development-an-engineering-discipline
https://wiki.c2.com/?AlanKaysDefinitionOfObjectOriented
https://www.amieindia.in/downloads/ebooks/cplusplus.pdf#page=700
https://en.wikipedia.org/wiki/Object-Oriented_Software_Construction
https://www.leaseweb.com/labs/2015/08/object-oriented-programming-is-exceptionally-bad/
https://medium.com/@konradmusial/why-oop-is-bad-and-possibly-disastrous-e0844fa96c1f
https://en.wikipedia.org/wiki/Strong_and_weak_typing
https://en.wikipedia.org/wiki/Type_theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory
https://softwareengineering.stackexchange.com/questions/279316/what-exactly-makes-the-haskell-type-system-so-revered-vs-say-java
https://docs.huihoo.com/scala/programming-scala/ch12.html
https://wiki.c2.com/?BenefitsOfDynamicTyping
https://softwareengineering.stackexchange.com/questions/122205/what-is-the-supposed-productivity-gain-of-dynamic-typing
https://pleiad.cl/papers/2014/hanenbergAl-emse2014.pdf
https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/rdl04meijer.pdf
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Kolmogorov_complexity
https://en.wikipedia.org/wiki/Chaitin%27s_constant
https://en.wikipedia.org/wiki/MU_puzzle
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
http://160592857366.free.fr/joe/ebooks/ShareData/Design%20of%20the%20Unix%20Operating%20System%20By%20Maurice%20Bach.pdf
https://en.wikipedia.org/wiki/SOLID
https://www.tonymarston.net/php-mysql/not-so-solid-oo-principles.html

3. How SOLID is SOLID - https://stackoverflow.com/questions/2997965/are-solid-principles
-really-solid

4. Quality IS SPEED

1. Why I Don't Teach Solid - http://qualityisspeed.blogspot.com/2014/08/why-i-dont-te
ach-solid.html

2. Beyond SOLID - http://qualityisspeed.blogspot.com/2014/09/beyond-solid-depende
ncy-elimination.html

3. SOLID IS Just Functional - https://blog.ploeh.dk/2014/03/10/solid-the-next-step-is-
functional/

5. We Should Drop Open Close Principle

1. Drop it Now - https://www.codeproject.com/articles/607395/a-call-to-drop-the-ope
n-closed-principle-from-the

2. It is Wrong - https://naildrivin5.com/blog/2019/11/14/open-closed-principle-is-conf
using-and-well-wrong.html

3. Better Rules for Software Design - https://naildrivin5.com/blog/2019/07/25/four-be
tter-rules-for-software-design.html

6. FLUID Principles - https://www.slideshare.net/Kevlin/introducing-the-fluid-principles

7. Least Astonishment

1. Standard - https://en.wikipedia.org/wiki/Principle_of_least_astonishment
2. Review - https://wiki.c2.com/?PrincipleOfLeastAstonishment

13. Inheritance

1. Objects Are Hard - https://www.keithschwarz.com/cs143/WWW/sum2011/lectures/120_
Runtime_Environments_2.pdf

2. Prototypal - https://javascript.info/prototype-inheritance
3. General - https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
4. COI - https://en.wikipedia.org/wiki/Composition_over_inheritance
5. Source of Abstract Map - http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/37a05a11f281/src/

share/classes/java/util/AbstractMap.java
6. Mixin in Ruby - https://www.cs.auckland.ac.nz/references/ruby/doc_bundle/Programmin

gRuby/book/tut_modules.html
14. Cost of Dynamic Polymorphism - Virtual Function

1. https://arxiv.org/pdf/2003.05039.pdf

2. https://stackoverflow.com/questions/667634/what-is-the-performance-cost-of-having-a-
virtual-method-in-a-c-class

3. https://softwareengineering.stackexchange.com/questions/191637/in-c-why-and-how-a
re-virtual-functions-slower

4. https://stackoverflow.com/questions/10125140/alternative-schemes-for-implementing-v
ptr

5. https://stackoverflow.com/questions/7013737/alternatives-to-vtable

6. https://stackoverflow.com/questions/23628081/a-standard-way-to-avoid-virtual-functio
ns

https://stackoverflow.com/questions/2997965/are-solid-principles-really-solid
http://qualityisspeed.blogspot.com/2014/08/why-i-dont-teach-solid.html
http://qualityisspeed.blogspot.com/2014/09/beyond-solid-dependency-elimination.html
https://blog.ploeh.dk/2014/03/10/solid-the-next-step-is-functional/
https://www.codeproject.com/articles/607395/a-call-to-drop-the-open-closed-principle-from-the
https://naildrivin5.com/blog/2019/11/14/open-closed-principle-is-confusing-and-well-wrong.html
https://naildrivin5.com/blog/2019/07/25/four-better-rules-for-software-design.html
https://www.slideshare.net/Kevlin/introducing-the-fluid-principles
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://wiki.c2.com/?PrincipleOfLeastAstonishment
https://www.keithschwarz.com/cs143/WWW/sum2011/lectures/120_Runtime_Environments_2.pdf
https://javascript.info/prototype-inheritance
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Composition_over_inheritance
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/37a05a11f281/src/share/classes/java/util/AbstractMap.java
https://www.cs.auckland.ac.nz/references/ruby/doc_bundle/ProgrammingRuby/book/tut_modules.html
https://arxiv.org/pdf/2003.05039.pdf
https://stackoverflow.com/questions/667634/what-is-the-performance-cost-of-having-a-virtual-method-in-a-c-class
https://softwareengineering.stackexchange.com/questions/191637/in-c-why-and-how-are-virtual-functions-slower
https://stackoverflow.com/questions/10125140/alternative-schemes-for-implementing-vptr
https://stackoverflow.com/questions/7013737/alternatives-to-vtable
https://stackoverflow.com/questions/23628081/a-standard-way-to-avoid-virtual-functions

7. https://stackoverflow.com/questions/4352032/alternative-virtual-function-calls-impleme
ntations

15. Erlang

1. Object Oriented - https://stackoverflow.com/questions/3431509/is-erlang-object-oriente
d/3433808

2. Message Passing - https://erlang.org/doc/getting_started/conc_prog.html
16. Programming Paradigms - https://en.wikipedia.org/wiki/Programming_paradigm

17. Database

1. ER Model - https://en.wikipedia.org/wiki/Entity–relationship_model
2. Relational Algebra - https://en.wikipedia.org/wiki/Relational_algebra
3. ORM - https://en.wikipedia.org/wiki/Object-relational_mapping
4. LINQ - https://en.wikipedia.org/wiki/Language_Integrated_Query

18. MVVM - https://en.wikipedia.org/wiki/Model–view–viewmodel

19. Data Binding - https://en.wikipedia.org/wiki/Data_binding

20. Reversible Computation & Immutability

1. Referential Transparency - https://en.wikipedia.org/wiki/Referential_transparency
2. Reversible - https://en.wikipedia.org/wiki/Reversible_computing
3. Arrow Language - https://etd.ohiolink.edu/!etd.send_file?accession=oberlin1443226400

&disposition=inline
21. Quack & Duck

1. Classic Duck Typing - https://en.wikipedia.org/wiki/Duck_typing
2. Traits in Scala - https://stackoverflow.com/questions/16410298/what-are-the-difference

s-and-similarties-between-scala-traits-vs-java-8-interfa
3. Go Interfaces - https://jordanorelli.com/post/32665860244/how-to-use-interfaces-in-go
4. Rust Traits - https://blog.rust-lang.org/2015/05/11/traits.html
5. Rust Macros - https://doc.rust-lang.org/1.7.0/book/macros.html
6. Compiler Design - https://en.wikipedia.org/wiki/Principles_of_Compiler_Design

22. Review of Modern Development

1. https://jganguly.github.io/assets/programming.html
2. Design via Composition and Monads - https://www.linkedin.com/feed/update/urn:li:acti

vity:6522136329810210816/
3. Moving to Rust - https://jganguly.github.io/assets/rust.pdf
4. Tenets of ZoomBA Language Development - https://gitlab.com/non.est.sacra/zoomba/-/

blob/master/_wiki/00-Begin.md
23. Ryan Dhal Rant - https://gist.github.com/cookrn/4015437

24. People References

1. MR - https://en.wikipedia.org/wiki/Mark_Russinovich

2. Leslie Lamport - https://en.wikipedia.org/wiki/Leslie_Lamport

3. Claude Shannon - https://en.wikipedia.org/wiki/Claude_Shannon

4. Kolmogorov - https://en.wikipedia.org/wiki/Andrey_Kolmogorov

5. Bjarne - https://en.wikipedia.org/wiki/Bjarne_Stroustrup

https://stackoverflow.com/questions/4352032/alternative-virtual-function-calls-implementations
https://stackoverflow.com/questions/3431509/is-erlang-object-oriented/3433808
https://erlang.org/doc/getting_started/conc_prog.html
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Relational_algebra
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Language_Integrated_Query
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Data_binding
https://en.wikipedia.org/wiki/Referential_transparency
https://en.wikipedia.org/wiki/Reversible_computing
https://etd.ohiolink.edu/!etd.send_file?accession=oberlin1443226400&disposition=inline
https://en.wikipedia.org/wiki/Duck_typing
https://stackoverflow.com/questions/16410298/what-are-the-differences-and-similarties-between-scala-traits-vs-java-8-interfa
https://jordanorelli.com/post/32665860244/how-to-use-interfaces-in-go
https://blog.rust-lang.org/2015/05/11/traits.html
https://doc.rust-lang.org/1.7.0/book/macros.html
https://en.wikipedia.org/wiki/Principles_of_Compiler_Design
https://jganguly.github.io/assets/programming.html
https://www.linkedin.com/feed/update/urn:li:activity:6522136329810210816/
https://jganguly.github.io/assets/rust.pdf
https://gitlab.com/non.est.sacra/zoomba/-/blob/master/_wiki/00-Begin.md
https://gist.github.com/cookrn/4015437
https://en.wikipedia.org/wiki/Mark_Russinovich
https://en.wikipedia.org/wiki/Leslie_Lamport
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Bjarne_Stroustrup

6. Alan Kay - https://en.wikipedia.org/wiki/Alan_Kay

7. Liskov - https://en.wikipedia.org/wiki/Barbara_Liskov

8. Bertrand Meyer - https://en.wikipedia.org/wiki/Bertrand_Meyer

9. Martin Ordersky - https://en.wikipedia.org/wiki/Martin_Odersky

10. Guido - https://en.wikipedia.org/wiki/Guido_van_Rossum

11. Linus - https://en.wikipedia.org/wiki/Linus_Torvalds

12. Dave Cutler - https://en.wikipedia.org/wiki/Dave_Cutler

13. Noether - https://en.wikipedia.org/wiki/Emmy_Noether

25. Other Useless References (Give or Take)

1. Foundations of Mathematics (Prereq for Comp Science) - https://www.math.wisc.edu/~
miller/old/m771-10/kunen770.pdf

2. Scrum is NOT Agile - http://www.dennisweyland.net/blog/?p=43

3. Imperative Code Complexity - https://en.wikipedia.org/wiki/Cyclomatic_complexity

4. Probability Axioms - https://en.wikipedia.org/wiki/Probability_axioms

5. Nash Equilibrium - https://en.wikipedia.org/wiki/Nash_equilibrium

6. ESS - https://en.wikipedia.org/wiki/Evolutionarily_stable_strateg

7. Evolutionary Psychology - https://en.wikipedia.org/wiki/Evolutionary_psychology

8. Pricing Theory - https://en.wikipedia.org/wiki/Arbitrage_pricing_theory

9. Trouble With Physics - https://en.wikipedia.org/wiki/The_Trouble_with_Physics

10. Russel's Teapot - https://en.wikipedia.org/wiki/Russell%27s_teapot

11. Banach Tarski - https://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox

12. The Toyota Way - https://en.wikipedia.org/wiki/Toyota_Production_System

https://en.wikipedia.org/wiki/Alan_Kay
https://en.wikipedia.org/wiki/Barbara_Liskov
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Dave_Cutler
https://en.wikipedia.org/wiki/Emmy_Noether
https://www.math.wisc.edu/~miller/old/m771-10/kunen770.pdf
http://www.dennisweyland.net/blog/?p=43
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Probability_axioms
https://en.wikipedia.org/wiki/Nash_equilibrium
https://en.wikipedia.org/wiki/Evolutionarily_stable_strateg
https://en.wikipedia.org/wiki/Evolutionary_psychology
https://en.wikipedia.org/wiki/Arbitrage_pricing_theory
https://en.wikipedia.org/wiki/The_Trouble_with_Physics
https://en.wikipedia.org/wiki/Russell%27s_teapot
https://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox
https://en.wikipedia.org/wiki/Toyota_Production_System

	Re-Thinking Software As Engineering
	Why This Document
	Is Developing Software Engineering ?
	What is Engineering ?
	What makes Software Not Engineering Today?
	How Software Can become Engineering?

	Path Forward
	Deny Dogma
	Many DOGMAs are Remnants of OOP
	S
	O
	L
	I
	D

	Get Shit Done

	Further Discussion on "Design" & Metrics
	Perils of Inheritance
	Almost Abstract Class - Interfaces with Default

	Onto State Management and Reversible Computation
	Object Relational Mapping - ORM
	View Models & Data Binding
	Information Conservation - Reversible Computation - Immutability
	Quack Like a Duck, Typing and Traits , Mixins

	Final Words
	Further Reading & References

